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Abstract

Objective: To evaluate the effect of grinding with different diamond burs on the surface roughness (Ra) and flexural strength (FS) 
of hydrothermally aged zirconia. 

Materials and Methods: Ninety-eight bar-shaped monolithic zirconia specimens were prepared and divided into 7 subgroups 
according to grinding procedures: control, grinding with diamond burs (F; fine, M; medium, C; coarse); and grinding with zirconia-
specific diamond burs (ZF; fine, ZM; medium, ZC; coarse). All ground specimens were polished using a two-step zirconia polishing 
system. All specimens were subjected to autoclave aging. Ra was measured using a profilometer. One specimen per group was 
examined by scanning electron microscopy and X-ray diffractometry. A 3-point FS test was performed using a universal testing 
machine. 

Results: The lowest and highest Ra values were obtained in the control and C groups, respectively. The ZC group showed higher Ra 
values than the ZF and ZM groups. There was no difference between the FS values of the ZF and control groups. However, other 
grinding procedures led to decreased FS.

Conclusion: Zirconia-specific fine diamond burs are recommended to maintain the mechanical strength of zirconia when clinical 
adjustments are needed.
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Öz

Amaç: Farklı elmas frezler ile yapılan aşındırmanın hidrotermal olarak yaşlandırılmış zirkonyanın yüzey pürüzlülüğü (Ra) ve eğilme 
dayanımına (FS) etkisini değerlendirmektir.

Gereç ve Yöntemler: Doksan sekiz adet bar şeklinde monolitik zirkonya örnek hazırlandı ve aşındırma prosedürlerine göre 7 gruba 
ayrıldı: kontrol, elmas frezlerle aşındırma (F; ince, M; orta, C; kalın), zirkonyaya özgü elmas frezlerle aşındırma (ZF; ince, ZM; orta, 
ZC; kalın). Aşındırma yapılan tüm örneklere 2 aşamalı zirkonya polisaj sistemi kullanılarak polisaj işlemi uygulandı. Tüm örnekler 
otoklavda yaşlandırıldı. Ra değerleri profilometre kullanılarak ölçüldü. Her gruptan bir örnek taramalı elektron mikroskobu ve X-ışını 
difraktometresi kullanılarak incelendi. Evrensel bir test cihazı kullanılarak 3 nokta eğme testi yapıldı. 

Bulgular: En düşük ve en yüksek Ra değerleri sırasıyla kontrol ve C gruplarında elde edildi. ZC grubu ZF ve ZM gruplarından 
daha yüksek Ra değerleri gösterdi. ZF ve kontrol gruplarının FS değerleri arasında farklılık gözlenmedi. Ancak diğer aşındırma 
prosedürleri daha düşük FS değerlerine yol açtı.

Sonuç: Klinik düzenlemeler gerekli olduğunda zirkonyaya özel ince grenli elmas frezlerin kullanımı zirkonyanın mekanik dayanıklılığını 
korumak için önerilmektedir.
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Introduction

Zirconium oxide has gained considerable popularity 
for prosthetic restorations due to its esthetic potential, 
mechanical properties, and biocompatibility. It is well-
documented that one common clinical failure for zirconia-
based restorations is the chipping of veneering porcelain 
(1,2). Monolithic zirconia is widely used to overcome this 
complication. These materials not only eliminate the need 
for veneering porcelain owing to their improved optical 
properties but also offer high flexural strength (FS), 
preservation of tooth structure during preparation, and 
reduced clinical and laboratory time (3).

Polycrystalline zirconia has three crystallographic phases: 
monoclinic (m), tetragonal (t), and cubic (c). It exists in 
m-phase at room temperature and t-phase between 1,170 
°C and 2,370 °C. To retain the t-phase at room temperature, 
metal oxides, such as MgO, CaO, or Y2O3, are added to 
zirconium oxide, with yttria (Y2O3)-stabilized tetragonal 
zirconia polycrystal being the most commonly used type 
(4). However, surface treatments such as airborne particle 
abrasion and clinical adjustments using burs can trigger 
t→m phase transformation (5). This transformation also 
occurs when zirconia is exposed to the moist environment 
of the oral cavity. This phenomenon is referred to as low-
temperature degradation, which may adversely affect the 
mechanical properties of zirconia ceramic (6-8). 

Intraoral adjustments may be necessary for monolithic 
zirconia restorations (9,10). However, such adjustments 
with discs or burs can cause surface damage (5). Besides, 
chairside adjustments can increase surface roughness 
(Ra) on the monolithic zirconia restoration, resulting in 
undesirable conditions such as plaque accumulation and 
wear on opposing teeth (9,10). Intraoral polishing systems 
offer advantages over re-glazing, including reduced office 
visits and avoidance of multiple firing cycles. Moreover, 
zirconia polishing systems can reduce surface flaws and 
enhance the FS of restorations, thereby contributing to their 
longevity (10).

The influence of grinding and polishing procedures on the 
FS of zirconia is widely investigated in the literature (4,11). 
However, the effects of grinding with zirconia-specific 
diamond burs followed by manual polishing on the FS of 
monolithic zirconia are still unclear. Therefore, this study 
investigated the impact of grinding with either zirconia-
specific or conventional diamond burs of varying grain sizes 
and polishing with zirconia-specific polishing systems on 
monolithic zirconia. The null hypotheses were that Ra and 
FS would remain unaffected by applying different bur types.

Materials and Methods

Specimen Preparation
The sample size was determined using a power analysis 
conducted with G*power software (v.3.1.9.2, Dusseldorf, 
Germany). With an effect size of 0.4, a significance level 

of 0.05, and a power of 80%, 14 specimens per group 
were determined sufficient. Ninety-eight bar-shaped 
specimens were obtained from a monolithic zirconia blank 
(CopraSmile, Whitepeaks Dental Solutions, Essen, Germany) 
using a diamond saw (Metcon 19-150, Metkon Instruments, 
Bursa, Turkey) mounted to a cutting device (MOD Dental, 
Esetron Smart Robotechnologies, Ankara, Turkey) under 
running water. The specimens were finished using 600, 
1,000, and 1,200 grit silicon-carbide abrasive papers. The 
long edges of the bar-shaped specimens were chamfered 
using the final abrasive paper. All samples underwent 
ultrasonic cleaning in distilled water for 10 min. Specimens 
were sintered at 1,500 °C (Programat S1, Ivoclar Vivadent, 
Schaan, Liechtenstein) according to the manufacturer’s 
instructions. The thickness of the samples for the grinding 
groups was considered 1.25 mm, according to the material 
to be removed during the process; sample thickness in the 
control group was adjusted to 1.2 mm. The width and length 
of sintered specimens were 4 mm and 20 mm, respectively. 
The specimens were randomly divided into 7 subgroups;

Control: No grinding and polishing 

F: Grinding with fine diamond bur + polishing 

M: Grinding with medium diamond bur + polishing 

C: Grinding with coarse diamond bur + polishing 

ZF: Grinding with zirconia-specific fine diamond bur + 
polishing 

ZM: Grinding with zirconia-specific medium diamond bur + 
polishing 

ZC: Grinding with zirconia-specific coarse diamond bur + 
polishing

Ethics committee approval was not obtained since the 
study was carried out in an experimental environment on 
materials that did not belong to any living organism.

Grinding and Polishing Procedures 
Grinding was done using diamond burs and zirconia-
specific diamond burs (Meisinger, Hager & Meisinger, 
Neuss, Germany) with a sweeping motion, removing 0.05 
mm material from one entire surface of the specimen. A 
digital caliper was used to verify the final thickness of the 
specimens. Subsequently, manual polishing was performed 
on ground surfaces with a 2-step zirconia polishing system 
(Drendel + Zweiling Diamant, Kalletal, Germany) using 
each tool for 20 s. Grinding and polishing procedures 
were performed under water cooling. All procedures were 
conducted by a single experienced operator (H.Ş.). After 
polishing, all specimens were ultrasonically cleaned again 
in distilled water for 10 min. The burs used for grinding and 
the 2-step polishing system are shown in Figure 1.

Hydrothermal Aging 
All specimens were subjected to an accelerated aging 
procedure using a steam autoclave (Yeson YS-22L-E, 
Ningbo Haishu Yeson Medical Device, Zhejiang, China). 
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The specimens were positioned in autoclave-safe trays and 
exposed to 5 sequential cycles, each lasting 60 min. Thus, 
the total exposure time amounted to 5 hours, maintaining a 
temperature of 134 °C and a pressure of 2 bars. Five-hour 
autoclave aging corresponds to approximately 15-20 years 
of actual aging (6,12).

Surface Roughness Evaluation
The average Ra values were obtained using a profilometer 
(Surftest SJ-210, Mitutoyo, Kanagawa, Japan). 
Measurements were taken at a constant speed of 0.5 mm/s 
and a cut-off value of λc=0.25 mm. The arithmetic mean 
of 5 perpendicular readings was accepted as the final Ra 
score for each specimen. The surface profilometer was 
recalibrated after measuring every 5 specimens.

Scanning Electron Microscopy
Additional samples from each group were analyzed using 
scanning electron microscopy (SEM). The samples were 
subjected to gold sputter-coating (Quorum Q150R ES, 
Quorum Technologies, East Grinstead, UK). Subsequently, 
SEM images were captured using the scanning electron 
microscope (EVO LS-10, Carl Zeiss Microscopy, Cambridge, 
UK) at magnifications of ×1000 and ×5000, operating at 25 
kV.

X-ray Diffraction (XRD) Analysis
Crystal structure analysis was performed using an X-ray 
diffractometer (Bruker D8 Advance, Bruker AXS, Karlsruhe, 
Germany). Operating current and voltage conditions were 
set at 40 mA and 40 kV, respectively. Surface scans were 
performed within the range of 20 to 40 2θ degrees, using a 
step size of 0.019. The relative amount of m-phase (Xm) was 
determined by applying equation 1 (13), while the volumetric 
fraction (Fm) was calculated using equation 2 (14):

[1] Xm=(Im(−111) + Im(111))/(Im(−111) + Im(111) + It(101))

[2] Fm=(1.311Xm)/(1+0.311Xm)

where Im (−111) and Im (111) represent m-peak intensities 
at approximately 28 and 31 2θ°, respectively, and It (101) 
denotes t-peak intensity at approximately 30 2θ°.

Flexural Strength 
FS data were obtained by implementing a three-point 
bending test using a universal testing machine (Marestek, 
Mares Engineering, İstanbul, Turkey). The specimens were 
positioned on metal supports with the treated surfaces 
under tension, and the force was applied to the center of 
samples with a constant cross-head speed of 1 mm/min 
until failure occurred. The radii of the 2 metal supports 
and loading piston were 0.8 mm, and the distance between 
the centers of the supports was 14 mm. FS values were 
calculated in MPa using the following equation based on ISO 
6872: 

σ = 3Fd/2wh2 

where σ is the FS; F is the fracture load (N); d is the span 
(distance between the center of the supports) (mm); w is 
the width of the specimen (mm); h is the thickness of the 
specimen (mm).

Statistical Analysis
Statistical analyses were performed at a significance level 
of α=0.05 (SPSS/PC Version 24.0; SPSS Inc., Chicago, IL, 
USA). The normality of the data was assessed using the 
Shapiro-Wilk test, while the homogeneity of variances was 
evaluated using the Levene test. To analyze both Ra and FS 
data, One-Way analysis of variance (ANOVA) and Tamhane’s 
T2 tests were performed. Pearson correlation analysis was 
performed to determine the relationship between Ra and 
FS. 

Results

Surface Roughness
One-way ANOVA revealed significant differences among 
subgroups (F=256.581, p<0.001). All treated groups showed 
significantly higher Ra values than the control group 
(p<0.001) (Table 1). For the diamond bur groups (F, M, and 
C), Ra increased statistically as the grain size increased. ZC 
showed statistically higher Ra values than both ZM and ZF 
(p<0.001). Although the mean Ra of ZM was higher than that 
of ZF, this difference was statistically insignificant (p=1,000). 
While there was no significant difference between F and 
ZF groups (p=0.448), medium and coarse zirconia-specific 
diamond burs led to decreased Ra compared to diamond 
burs with the same grain sizes (p<0.001). 

SEM Analysis
In line with the Ra results, SEM images of the control group 
showed the smoothest surface (Figure 2). In contrast, the 
C group exhibited deep surface grooves and microcracks. 
The F group exhibited smoother surfaces than both C and 
M. The ZC group showed more irregular surfaces than both 
ZM and ZF. 

Figure 1. Grinding burs and polishing system A) Diamond grinding 
burs; B) Zirconia-specific diamond grinding burs; C) Zirconia-
specific polishing system



318    Şeker et al. Flexural Strength of Ground Zirconia

Phase Transformation 
No distinct m-peaks were observed in the control group 
(Figure 3), while ground specimens exhibited similar 
diffraction patterns with minimal m-peaks (Fm values= F: 
2.9 %; M: 2.9%; C: 3.3%; ZF: 3%; ZM: 2.7%; ZC: 2.9%). 

Flexural Strength
According to One-Way ANOVA, there were significant 
differences among test groups (F=191.126, p<0.001). All the 
ground groups, except ZF, showed significantly lower FS 
values than the control group (p<0.001) (Table 2). There 
was no significant difference between ZF and control 
groups (p=0.996). Zirconia-specific diamond bur groups 

showed statistically higher FS values than diamond bur 
groups with the same grain sizes (p<0.001). FS values 
decreased significantly with the increase in grain size for 
both diamond bur groups and zirconia-specific diamond bur 
groups (p<0.001). 

Pearson correlation analysis revealed a significant negative 
correlation (r=-0.851, p<0.001) between Ra and FS.

Discussion

Based on the results obtained from this study, all null 
hypotheses were rejected due to significant differences 
among the test groups for the dependent variables.

Figure 3. X-ray diffraction patterns 

Figure 2. Scanning electron microscopy images 

Table 1. Results of the statistical analysis of surface roughness (Ra; µm)

Mean ± SD* Minimum Maximum 95% CI

Control 0.384±0.047A 0.29 0.46 0.357-0.411

ZF 0.697±0.051B 0.58 0.78 0.667-0.726

ZM 0.716±0.051B 0.66 0.85 0.687-0.746

F 0.768±0.099B 0.59 0.89 0.710-0.825

ZC 0.934±0.049C 0.87 1.02 0.906-0.962

M 0.982±0.079C 0.85 1.14 0.936-1.028

C 1.254±0.050D 1.12 1.32 1.225-1.283

SD: Standard deviation, CI: Confidence interval, *The groups with the same superscript letters are not statistically different (p>0.05)
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After chairside adjustments, the primary objective is to 
achieve a smooth surface comparable to the glazed surface, 
promoting oral tissue compatibility and resistance to plaque 
accumulation (15,16). Although glazed restorations display 
smooth surfaces, their wear behavior is not significantly 
superior to that of polished restorations. Glazed surfaces 
tend to result in more wear of the opposing teeth than 
polished surfaces (17,18). In a recent study, Badarneh et al. 
(19) preferred polishing over glazing as the surface finishing 
procedure for monolithic zirconia as it significantly reduced 
the wear of enamel antagonists. 

In this study, Ra values were statistically higher in all 
grinding-applied groups than in the control group, even if 
the specimens were polished after grinding. Besides, Ra 
values significantly increased as the grain size increased 
in diamond bur and zirconia-specific diamond bur groups, 
except for the similarity between ZF and ZM groups. 
Corroborating this result, Hmaidouch et al. (1) concluded 
that coarse grinding is closely related to high roughness 
values. In line with the Ra results, SEM analyses of the 
current study revealed that coarse grinding caused more 
distinct grooves than grinding with medium and fine burs.

Various factors, such as phase change, crack formation, 
and surface flaws, can determine the mechanical strength 
of zirconia (20). In earlier research, Kosmac et al. (21) 
concluded that the relation between the depth of grinding-
induced surface compressive layer resulting from phase 
transformation and the length of surface flaws was critical. 
According to the same authors, when the length of surface 
flaws exceeded the thickness of the surface compressive 
layer, the mechanical strength of zirconia tended to decrease. 
Microcracks or flaws due to surface grinding act as sites 
of stress concentration, which may cause a reduction in 
the FS of zirconia (22). In the present study, the mean FS 
of the grinding-applied groups, except ZF, was lower than 
the control group. However, no significant difference was 
observed between the FS of ZF and control groups, probably 
due to the low Ra values of ZF and few surface defects 
seen in SEM images. Therefore, grinding with zirconia-
specific fine diamond burs followed by polishing may be 
a promising protocol if clinical adjustments are needed. 

Conversely, the C group showed the lowest mean FS, which 
may be strongly related to microcracks, as seen in SEM 
images. Moreover, FS values significantly decreased as the 
grain size increased in diamond bur and zirconia-specific 
diamond bur groups. Similarly, some studies highlighted 
that excessive grinding could lead to deep surface flaws 
(20,23). Therefore, clinicians should avoid coarse grinding 
of monolithic zirconia restorations.

To simulate long-term intraoral conditions, accelerated 
hydrothermal aging was applied to all zirconia specimens, 
which can be also effective on mechanical properties (24). 
However, XRD analysis showed no distinct m-peaks for the 
control group. This result indicated that hydrothermal aging 
did not trigger t→m phase transformation, possibly due 
to the high yttria content of the monolithic zirconia used. 
Moreover, each type of diamond bur led to similar XRD 
patterns. Fm values of ground specimens ranged between 
2.7% and 3.3%. Thus, the FS of samples may not have been 
adversely affected by grinding-induced minimal t→m phase 
transformation.

In a recent study, Kheur et al. (16) used diamond and modified 
diamond burs (zirconia specified) for zirconia cutting. The 
results showed no relationship between mean Ra and 
FS. Lee et al. (4) reported that coarse grinding without 
subsequent polishing resulted in higher Ra and lower FS 
than fine grinding. The current study showed a meaningful 
negative correlation between Ra and FS. Moreover, grinding 
with diamond burs, except fine grinding, resulted in higher 
Ra values than grinding with zirconia-specific diamond burs 
with the same grain size; FS values were statistically lower 
in diamond bur groups compared to zirconia-specific bur 
groups. 

In this study, chairside adjustment procedures were 
simulated by a single operator. Despite efforts to standardize 
the grinding and polishing procedures and maintain 
consistent pressure, the pressure applied was possibly not 
as precisely controlled as in a controlled experimental setup. 
Another limitation of the study was that crucial factors, 
such as dynamic occlusal load, neuromuscular forces, and 
parafunctional habits, were excluded. The present study 
focused on the FS of a single brand of zirconia that consists 

Table 2. Results of the statistical analysis of flexural strength (FS; MPa)

Mean ± SD* Minimum Maximum 95% CI

C 310.19±11.32A 294.71 329.47 303.65-316.73

M 357.96±21.10B 327.24 386.17 345.78-370.15

ZC 372.20±22.20B 327.21 420.49 359.39-385.02

F 401.48±22.95C 358.77 445.02 388.23-414.73

ZM 440.58±32.34D 387.91 493.36 421.91-459.26

ZF 533.57±34.90E 473.75 590.41 513.42-553.72

Control 546.13±14.81E 526.01 575.46 537.59-554.68

SD: Standard deviation, CI: Confidence interval, *The groups with the same superscript letters are not statistically different (p>0.05)
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of approximately 9% yttria. Therefore, additional studies 
evaluating different types of zirconia are needed. 

Conclusion

From a clinical perspective, chairside adjustments of 
monolithic zirconia restorations should be avoided. However, 
we recommend zirconia-specific diamond burs with smaller 
grain sizes when occlusal adjustments are necessary for 
achieving optimal occlusal harmony. This approach may 
ensure long-term durability without jeopardizing the 
mechanical properties of monolithic zirconia.
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